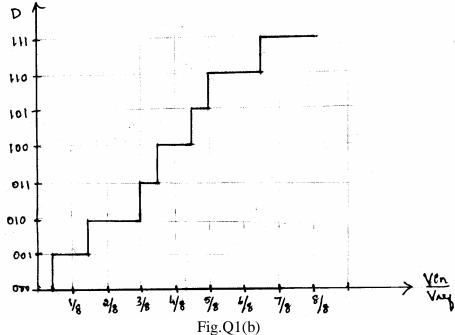
Sixth Semester B.E. Degree Examination, June 2012


Analog and Mixed Mode VLSI Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Determine the number of quantization levels needed if one wanted to make a digital thermometer that is capable of measuring temperature within 0.1°C accuracy over the range -50°C to 150°C. What is the resolution of ADC? (04 Marks)
 - b. Calculate DNL for a 3 bit ADC for the transfer curve shown in Fig.Q1(b). Assume V_{ref} = 5V. Draw the quantization error Q_e in units of LSB. (06 Marks)

- c. With a neat diagram, explain the mixed signal layout issues in detail.
- (10 Marks)
- 2 a. Plot the transfer curve of a 3-bit R-2R DAC, if all $R_s = 1.1 \text{ k}\Omega$ and $2R_s = 2 \text{ k}\Omega$. What is the max INL for the converter? Assume all of the switch to be ideal and $V_{ref} = 5 \text{ V}$. (12 Marks)
 - b. Design a 3 bit pipeline DAC and explain its operation. Also find the output voltage for a 3-bit pipeline DAC for 3 cases $D_A = 101$, $D_B = 010$, $D_C = 011$. Show that the conversion time to perform all three conversions is 5 clock cycles using pipeline approach. Assume $V_{ref} = 5 \text{ V}$.
- a. With a neat diagram, explain the operation of a parallel feed through ADC along with its advantages and disadvantages. (08 Marks)
 - b. Design a 3 bit pipeline ADC. Analyse the conversion process by making a table for D_2 , D_1 , D_0 , V_2 , V_1 for $V_{in} = 2V$, 3V, 4.5V. Assume $V_{ref} = 5V$. Let V_3 be residue of 1^{st} stage and V_2 be residue of 2^{nd} stage. (06 Marks)
 - c. Explain the operation of a single slope ADC, with a neat diagram.

- 4 a. Draw the block diagram of a high performance comparator and hence explain the operation of a decision circuit and obtain an expression for switching point. (10 Marks)
 - b. Explain the operation of a CMOS quad multiplier and hence obtain an expression for the multiplier output voltage. (10 Marks)

PART - B

- 5 a. Develop an expression for the effective number of bits in terms of measured SNR if the input sinewave has a peak amplitude of 40% of ($V_{ref+} V_{ref-}$). (06 Marks)
 - b. Explain dump and interpolate circuit used for interpolation and reverse averaging. (08 Marks)
 - c. What is the magnitude response of $(1 z^{-1})^3$. Sketch a block diagram implementation of the filter. (06 Marks)
- 6 a. Explain the sub-mirror CMOS process flow with a neat diagram. (12 Marks)
 - b. Estimate the size of Metall only to obtain the capacitance of 1 pF for the capacitor layout shown in Fig.Q6(b). Also estimate the bottom parasitic capacitance. (04 Marks)

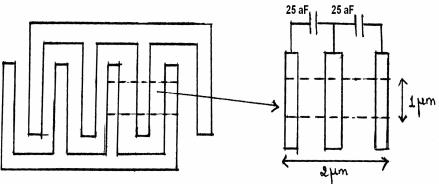
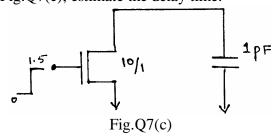



Fig.Q6(b)

c. Explain the fabrication of resistor using n-well.

- (04 Marks)
- 7 a. Explain the operation of D-Flip flop using TSPC logic and clocked CMOS logic with a neat diagram. (08 Marks)
 - b. Write the design equation for full adder. Using the equation, design full adder using dynamic logic. (08 Marks)
 - c. For the circuit shown in Fig.Q7(c), estimate the delay time.

(04 Marks)

- 8 a. Show that the floating current source will not load or decrease the resistance seen by cascade structure. (08 Marks)
 - b. Implement high speed, low power differential output op-amp and explain the operation.

(12 Marks)

* * * * *